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Abstract—RSA is the most well-known public key 
cryptosystem. The security of RSA is based on the difficulty of 
factoring the modulus which is the product of the two large 
prime numbers. If the modulus is factorized, RSA is broken. 
VFactor is a new factorization algorithm which can factorize the 
modulus faster than Fermat’s Factorization algorithm (FFM) 
and Trial Division algorithm (TDM). The runtime of VFactor 
depends on the difference between the two large prime numbers 
but not on the size of the modulus. In this paper, we propose 
implementing Modified VFactor (MVFactor) modified from 
VFactor in order to decrease the processing time in computation. 
Key to MVFactor is the decrease of computation time of 
computing the product of two integers. Experiments have shown 
that when using MVFactor, the computation speed increases in 
comparison to VFactor. However, if the difference between the 
two prime numbers is large, then the computation time of 
MVFactor is more decreased than the computation time of 
VFactor. 

Keywords—RSA; VFactor; Integer Factorization; Computation 
Time 

I.  INTRODUCTION  

RSA cryptosystem [1] proposed in 1978 is the most well-
known public key cryptosystem. It is widely used to secure the 
information in the insecure channel [10]. RSA algorithm uses 
a pair of keys to encrypt and decrypt a message: One key is 
used to encrypt a message, called a public key, e; and the other 
key is the inverse of the public key modulo the Euler’ s totient 
function, )(Φ n , used to decrypt the encrypted message, called 

a private key, d. Generally, d is kept secret for only parties but 
e is disclosed for intended recipient. The principle of RSA is 
that: it is very easy to find the two large prime numbers and 
the product of these prime numbers, but it is more 
computationally difficult to factorize the modulus, n, which is 
the product of two prime numbers. The security of RSA is 
based on the difficulty of integer factorization. Assume that 
we can factorize n = p*q, p and q are prime numbers, after 
that )(Φ n  is computed: )(Φ n  = (p - 1)(q – 1) and we can 

recover d: e*d mod )(Φ n  = 1. Thus RSA is broken. 

Many factorization algorithms were introduced, such as 
Trial Division algorithm (TDM) [9], Fermat’s Factorization 
algorithm (FFM) [3], Quadratic Sieve (QS) [4, 8], Pollard’s  

p-1 algorithm [3, 9] and Monte Carlo Factorization algorithm 
[9, 11]. Some factorization algorithms cannot finish all trivial 
and nontrivial values of n, such as Pollard’s p-1 algorithm [3].  

Latter, Prashant Sharma et al [2] proposed the new method 
to factorize n, called VFactor, in 2012. It is an algorithm 
which can finish all trivial and nontrivial values of n [3]. The 
computation time of VFactor is based on the difference 
between the two large prime factors but not on the size of n. 
The speed of VFactor is faster than FFM and TDM but in 
some cases, the computation speed of TDM is faster than 
VFactor only when n is less than 1012 [2]. However, if the 
difference between the two prime numbers is little, VFactor 
can factorize more quickly. The idea of VFactor is that we 
have to find the product of two integers: m = x*y, y is a 
maximum odd number which is less than or equal to 
floor(sqrt(n)) and x = y + 2, if m is equal to n. We can 
conclude that x and y are factors of n. Otherwise, if m is less 
than n, we continue computing x = x + 2 and m = x*y until m, 
which is equal to n, is found. However, if m is more than n, we 
continue computing y = y - 2 and m = x*y until m, which is 
equal to n, is found. 

In this paper, a Modified VFactor (MVFactor) modified 
from VFactor is proposed to implement. This method is not 
computed: m = x*y if the least significant digit of x or y is 5 
because we can strongly confirm that it is not a prime and m is 
not equal to n, except y is equal to 5. Experiments have shown 
that MVFactor can factorize faster than VFactor. In addition, 
if the difference between the two prime numbers is large, then 
the computation time of MVFactor is more decreased than the 
computation time of VFactor. 

II. RSA SCHEME 

RSA is a type of public key cryptosystem that is based on 
the difficulty of integer factorization. It is used for 
encryption/decryption message and digital signature. The 
process of RSA is divided into three parts as follows: 

1. Key generation process: Generate keys that are a 
public key and a private key for encryption and 
decryption, respectively. 
1.1 Generate the two large primes, p and q, 

randomly which should have the same size.  
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1.2 Compute n = p*q. 
1.3 Compute )(Φ n  = (p-1)(q-1). 

1.4 Select an integer e randomly, 1<e< )(Φ n , such 

that gcd(e, )(Φ n ) = 1. 

1.5 Compute an integer d, 1<d< )(Φ n , such that e*d 

mod )(Φ n  = 1 using Extended Euclid Algorithm 

[5]. 
2. Encryption process: Encrypt the plaintext using a 

public key before sending to the insecure channel. 
2.1 c = me mod n, m is a plaintext and c is a 

ciphertext sending in the insecure channel. 
3. Decryption process: Decrypt the ciphertext using a 

private key to recover the plaintext. 
3.1 m = cd mod n. 

III. VFACTOR 

The security of RSA cryptosystem is based on integer 
factorization. To break RSA cryptosystem, a cryptanalyst has 
to factorize n. Currenly, there are many factorization 
algorithms used to break RSA such as TDM and FFM. 
VFactor is a new, fast factorization algorithm which can finish 
all trivial and nontrivial values of n. The speed of VFactor is 
faster than TDM and FFM [2]. The runtime of this algorithm 
is based on the difference between two prime factors. The 
scheme of VFactor is as follow:  

Input: the modulus n: n = p*q 

1: Let root = floor(sqrt(n)); 
2: If (root%2 == 0) 
3:     root = root – 1;  
4: EndIf 
5: y = root; 
6: x = y + 2; 
7: m = x * y;  
8: While(m != n) 
9:     If(m < n) 
10:         x = x + 2; 
11:     Else 
12:         y = y – 2; 
13:     EndIf 
14:     m = x*y; 
15: EndWhile 

Output: x and y, where x and y are prime numbers which 
are the factors of n 

Fig. 1. VFactor algorithm 

IV. OUR PROPOSED METHOD 

For VFactor, if the least significant digit of x or y is 5, we 
can strongly confirm that it is not a prime, because of 
divisibility by 5 of a decimal number. This is not true in the 
case where the value of y is 5 that is a prime. So, for the value 
of y is more than 5, if the least significant digit of x or y is 5, 
then we do not compute the product of x and y, because we 
can strongly confirm that it is not equal to n. In the case that 
the least significant digit of x is 5, we do not compute: m = 

x*y and continue computing x = x + 2 and m = x*y until a 
value of m, which is equal to a value of n, is found. 
Nevertheless, in the case that the least significant digit of y is 
5, we do not compute: m = x*y and continue computing y = y 
– 2 and m = x*y until a value of m, which is equal to a value 
of n, is found. The algorithm of MVFactor is as follow:  

Input: the modulus n: n = p*q 

1: If(n % 5 == 0) // Check, 5 is a prime factor of n 
2:     y = 5; 
3:     x = n / y; 
4: Else  // MVFactor starts here 
5:     Let root = floor(sqrt(n)); 
6:     If(root % 2 == 0) 
7:         root = root -1; 
8:     EndIf 
9:     y = root; 
10:     x = y + 2; 
11:     m = x * y; 
12:     xt = x % 10; // xt is the least significant digit of x 
13:     yt = y % 10; // yt is the least significant digit of y 
14:     While(m != n) 
15:         If(m < n) 

 16:             If(xt == 3) /* We do not use xt = 5 because x is 
17: not a prime */ 
18:                 xt = xt + 4; 
19:                 x = x + 4; 
20:             Else 
21:                 xt = xt + 2; 
22:                 x = x + 2; 
23:             EndIf 
24: /* If the least significant digit of x is 9, then the next  
25: should be 1 after computing x = x + 2 */ 
26:             If(xt == 9) 
27:                 xt = 1; 
28:             EndIf 
29:         Else 
30:             If(yt == 7){ /* We do not use yt = 5 because y 
31: is not a prime */ 
32:                 yt = yt – 4; 
33:                 y = y – 4; 
34:             Else 
35:                 yt = yt – 2; 
36:                 y = y – 2; 
37:             EndIf 
38: /* If the least significant digit of y is 1, then the next 
39: should be 9 after computing y = y - 2 */ 
40:             If(yt == 1) 
41:                 yt = 9; 
42             EndIf 
43:         EndIf 
44:         m = x * y; 
45:     EndWhile 
46: EndIf 

Output: x and y, where x and y are prime numbers which 
are the factors of n 

Fig. 2. MVFactor algorithm 
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Example 1: VFactor VS. MVFactor, given n = 72851 = 277 * 
263. 

Algorithm: VFactor 

root = floor(sqrt(n)) = 269 
So, y = 269, x = 271 
271 * 269 = 72899, that is more than n, compute y = y - 2 = 
267 
271 * 267 = 72357, that is less than n, compute x = x+2 = 273 
273 * 267 = 72891, that is more than n, compute y = y - 2 = 
265 
273 * 265 = 72345, that is less than n, compute x = x+2 = 275 
275 * 265 = 72875, that is more than n, compute y = y - 2 = 
263 
275 * 263 = 72325, that is less than n, compute x = x+2 = 277 
277 * 263 = 72851, here is equal to n, thus the factors of n are 
277 and 263 

According to Example 1 of VFactor, the iterations of 
computing the product of two integers are 7. 

 
Algorithm: MVFactor 

root = 269 
So, y = 269, x = 271 
271 * 269 = 72899, that is more than n, compute y = y - 2 = 
267 
271 * 267 = 72357, that is less than n, compute x = x+2 = 273 
273 * 267 = 72891, that is more than n, compute y = y - 2 = 
265. Because the least significant digit of y is 5, we continue 
computing y = y - 2 = 263. 
273 * 263 = 71799, that is less than n, compute x = x+2 = 
275. Because the least significant digit of x is 5, we continue 
computing x = x + 2 = 277. 
277 * 263 = 72851, here is equal to n, thus the factors of n are 
277 and 263 

According to Example 1 of MVFactor, the iterations of 
computing the product of two integers are only 5 which is less 
than VFactor.  

Example 2: VFactor VS. MVFactor, given n = 69133 = 269 * 
257. 

Algorithm: VFactor 

root = floor(sqrt(n)) = 262, that is an even number, thus we 
have to compute root = 262 – 1 = 261 
So, y = 261, x = 263 
263 * 261 = 68643, that is less than n, compute x = x+2 = 265 
265 * 261 = 69165, that is more than n, compute y = y - 2 = 
259 
265 * 259 = 68635, that is less than n, compute x = x+2 = 267 
267 * 259 = 69153, that is more than n, compute y = y - 2 = 
257 
267 * 257 = 68619, that is less than n, compute x = x+2 = 269 
269 * 257 = 69133, here is equal to n, thus the factors of n are 
269 and 257 

According to Example 2 of VFactor, the iterations of 
computing the product of two integers are 6. 

Algorithm: MVFactor 

root = 261 
So, y = 261, x = 263 
263 * 261 = 68643, that is less than n, compute x = x+2 = 
265. Because the least significant digit of x is 5, we continue 
computing x = x + 2 = 267. 
267 * 261 = 69687, that is more than n, compute y = y - 2 = 
259 
267 * 259 = 69153, that is more than n, compute y = y - 2 = 
257 
267 * 257 = 68619, that is less than n, compute x = x+2 = 269 
269 * 257 = 69133, here is equal to n, so the factors of n are 
269 and 257 

According to Example 2 of MVFactor, the iterations of 
computing the product of two integers are only 5 which is less 
than VFactor. 

From two examples above, we conclude that MVFactor can 
decrease iterations to compute the product of two integers in 
comparison to VFactor. That is, the computation time of 
MVFactor is decreased. 

V. RESULTS 

Experiments have shown the comparison between VFactor 
and MVFactor. We choose BigInteger Class in Java to 
implement two algorithms, because BigInteger is a data type 
which is unlimited in size. In order to control the same 
settings, all experiments were conducted on 2.53 GHz an 
Intel® Core i3 with 4 GB memory. 

TABLE I.  COMPARISON BETWEEN VFACTOR AND MVFACTOR 

n V - Factor MV – Factor 
Com- 
puting 

m = x*y 
(Iterations) 

Comp
utatio

n 
Time 

(s) 

Com- 
puting 

m = x*y 
(Iterations) 

Computa
tion 

Time (s) 
(Speed 

Up (%)) 

25426686165792287 
= 137462537 *  
184971751 

23754607 3.73 19003687 3.15 
(15.54%

) 
780115113938271913 
= 840219481 * 
928465873 

44123196 6.81 35298558 5.76 
(15.42%

) 
5889267638331574111  
= 2160246761 * 
2726201351 

282977295 43.03 226381837 36.05 
(16.22%

) 
163216432381925762729 
= 16955697601 *  
9626052329 

3664822636 804.69 2931858109 653.14 
(18.83%

) 

 
According to Table I, the iterations of computing the 

product of two integers of MVFactor are less than VFactor. 
That is, the computation time of MVFactor is decreased. For 
example, in Table I, n = 163216432381925762729 = 
16955697601 * 9626052329, the iterations of computing the 
product of two integers of VFactor are 3664822636 but 
MVFactor are only 2931858109. That is, if we use MVFactor, 
the iterations of computing the product of two integers are 
decreased to 732964527 (3664822636 – 2931858109). In this 
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case, MVFactor is faster than VFactor which takes 804.69 
seconds about 18.83%. 
 

 
Fig. 3. Comparison of factorization algorithms 

Fig. 3 shows a plot of comparison of factorization 
algorithms between computation time and decimal digits of n 
during 15 to 20 digits by using TDM, FFM, VFactor and 
MVFactor. In Fig. 3, we choose prime factors of n with the 
same size for experiments and we can see that MVFactor use 
less time than VFactor, FFM and TDM to factorize n by 
several examples. 

VI. CONCLUSION 

In this paper, MVFactor modified from VFactor is 
proposed. This method computes the product of two integers 
only if the least significant digit of two integers is not equal to 
5. We can strongly confirm that the product of two integers is 
not equal to n when the least significant digit of one out of two 
integers is 5, because it is not a prime. Experiments have 
shown that MVFactor can find the factors of n much faster 
than VFactor. However, if q is far from p, the computation 
time of MVFactor is more decreased than the computation 
time of VFactor. The future work, we wish to improve 
MVFactor to factorize the bigger size of n in the proper time. 

For example, we may reduce more iterations to compute the 
product of two integers. The multiplication is not computed 
when we know that, one out of two multipliers is not a prime 
number. 
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