
MVFactor: A Method to Decrease Processing Time
for Factorization Algorithm

Kritsanapong Somsuk
Department of Computer Science, Faculty of Science

Khon Kaen University, KKU
Khon Kaen, Thailand

kritsanapong@kkumail.com

Sumonta Kasemvilas
Department of Computer Science, Faculty of Science

Khon Kaen University, KKU
Khon Kaen, Thailand

sumkas@kku.ac.th

Abstract—RSA is the most well-known public key
cryptosystem. The security of RSA is based on the difficulty of
factoring the modulus which is the product of the two large
prime numbers. If the modulus is factorized, RSA is broken.
VFactor is a new factorization algorithm which can factorize the
modulus faster than Fermat’s Factorization algorithm (FFM)
and Trial Division algorithm (TDM). The runtime of VFactor
depends on the difference between the two large prime numbers
but not on the size of the modulus. In this paper, we propose
implementing Modified VFactor (MVFactor) modified from
VFactor in order to decrease the processing time in computation.
Key to MVFactor is the decrease of computation time of
computing the product of two integers. Experiments have shown
that when using MVFactor, the computation speed increases in
comparison to VFactor. However, if the difference between the
two prime numbers is large, then the computation time of
MVFactor is more decreased than the computation time of
VFactor.

Keywords—RSA; VFactor; Integer Factorization; Computation
Time

I. INTRODUCTION

RSA cryptosystem [1] proposed in 1978 is the most well-
known public key cryptosystem. It is widely used to secure the
information in the insecure channel [10]. RSA algorithm uses
a pair of keys to encrypt and decrypt a message: One key is
used to encrypt a message, called a public key, e; and the other
key is the inverse of the public key modulo the Euler’ s totient
function,)(Φ n , used to decrypt the encrypted message, called

a private key, d. Generally, d is kept secret for only parties but
e is disclosed for intended recipient. The principle of RSA is
that: it is very easy to find the two large prime numbers and
the product of these prime numbers, but it is more
computationally difficult to factorize the modulus, n, which is
the product of two prime numbers. The security of RSA is
based on the difficulty of integer factorization. Assume that
we can factorize n = p*q, p and q are prime numbers, after
that)(Φ n is computed:)(Φ n = (p - 1)(q – 1) and we can

recover d: e*d mod)(Φ n = 1. Thus RSA is broken.

Many factorization algorithms were introduced, such as
Trial Division algorithm (TDM) [9], Fermat’s Factorization
algorithm (FFM) [3], Quadratic Sieve (QS) [4, 8], Pollard’s

p-1 algorithm [3, 9] and Monte Carlo Factorization algorithm
[9, 11]. Some factorization algorithms cannot finish all trivial
and nontrivial values of n, such as Pollard’s p-1 algorithm [3].

Latter, Prashant Sharma et al [2] proposed the new method
to factorize n, called VFactor, in 2012. It is an algorithm
which can finish all trivial and nontrivial values of n [3]. The
computation time of VFactor is based on the difference
between the two large prime factors but not on the size of n.
The speed of VFactor is faster than FFM and TDM but in
some cases, the computation speed of TDM is faster than
VFactor only when n is less than 1012 [2]. However, if the
difference between the two prime numbers is little, VFactor
can factorize more quickly. The idea of VFactor is that we
have to find the product of two integers: m = x*y, y is a
maximum odd number which is less than or equal to
floor(sqrt(n)) and x = y + 2, if m is equal to n. We can
conclude that x and y are factors of n. Otherwise, if m is less
than n, we continue computing x = x + 2 and m = x*y until m,
which is equal to n, is found. However, if m is more than n, we
continue computing y = y - 2 and m = x*y until m, which is
equal to n, is found.

In this paper, a Modified VFactor (MVFactor) modified
from VFactor is proposed to implement. This method is not
computed: m = x*y if the least significant digit of x or y is 5
because we can strongly confirm that it is not a prime and m is
not equal to n, except y is equal to 5. Experiments have shown
that MVFactor can factorize faster than VFactor. In addition,
if the difference between the two prime numbers is large, then
the computation time of MVFactor is more decreased than the
computation time of VFactor.

II. RSA SCHEME

RSA is a type of public key cryptosystem that is based on
the difficulty of integer factorization. It is used for
encryption/decryption message and digital signature. The
process of RSA is divided into three parts as follows:

1. Key generation process: Generate keys that are a
public key and a private key for encryption and
decryption, respectively.
1.1 Generate the two large primes, p and q,

randomly which should have the same size.

2013 International Computer Science and Engineering Conference (ICSEC): ICSEC 2013 English Track Full Papers

345

1.2 Compute n = p*q.
1.3 Compute)(Φ n = (p-1)(q-1).

1.4 Select an integer e randomly, 1<e<)(Φ n , such

that gcd(e,)(Φ n) = 1.

1.5 Compute an integer d, 1<d<)(Φ n , such that e*d

mod)(Φ n = 1 using Extended Euclid Algorithm

[5].
2. Encryption process: Encrypt the plaintext using a

public key before sending to the insecure channel.
2.1 c = me mod n, m is a plaintext and c is a

ciphertext sending in the insecure channel.
3. Decryption process: Decrypt the ciphertext using a

private key to recover the plaintext.
3.1 m = cd mod n.

III. VFACTOR

The security of RSA cryptosystem is based on integer
factorization. To break RSA cryptosystem, a cryptanalyst has
to factorize n. Currenly, there are many factorization
algorithms used to break RSA such as TDM and FFM.
VFactor is a new, fast factorization algorithm which can finish
all trivial and nontrivial values of n. The speed of VFactor is
faster than TDM and FFM [2]. The runtime of this algorithm
is based on the difference between two prime factors. The
scheme of VFactor is as follow:

Input: the modulus n: n = p*q

1: Let root = floor(sqrt(n));
2: If (root%2 == 0)
3: root = root – 1;
4: EndIf
5: y = root;
6: x = y + 2;
7: m = x * y;
8: While(m != n)
9: If(m < n)
10: x = x + 2;
11: Else
12: y = y – 2;
13: EndIf
14: m = x*y;
15: EndWhile

Output: x and y, where x and y are prime numbers which
are the factors of n

Fig. 1. VFactor algorithm

IV. OUR PROPOSED METHOD

For VFactor, if the least significant digit of x or y is 5, we
can strongly confirm that it is not a prime, because of
divisibility by 5 of a decimal number. This is not true in the
case where the value of y is 5 that is a prime. So, for the value
of y is more than 5, if the least significant digit of x or y is 5,
then we do not compute the product of x and y, because we
can strongly confirm that it is not equal to n. In the case that
the least significant digit of x is 5, we do not compute: m =

x*y and continue computing x = x + 2 and m = x*y until a
value of m, which is equal to a value of n, is found.
Nevertheless, in the case that the least significant digit of y is
5, we do not compute: m = x*y and continue computing y = y
– 2 and m = x*y until a value of m, which is equal to a value
of n, is found. The algorithm of MVFactor is as follow:

Input: the modulus n: n = p*q

1: If(n % 5 == 0) // Check, 5 is a prime factor of n
2: y = 5;
3: x = n / y;
4: Else // MVFactor starts here
5: Let root = floor(sqrt(n));
6: If(root % 2 == 0)
7: root = root -1;
8: EndIf
9: y = root;
10: x = y + 2;
11: m = x * y;
12: xt = x % 10; // xt is the least significant digit of x
13: yt = y % 10; // yt is the least significant digit of y
14: While(m != n)
15: If(m < n)

 16: If(xt == 3) /* We do not use xt = 5 because x is
17: not a prime */
18: xt = xt + 4;
19: x = x + 4;
20: Else
21: xt = xt + 2;
22: x = x + 2;
23: EndIf
24: /* If the least significant digit of x is 9, then the next
25: should be 1 after computing x = x + 2 */
26: If(xt == 9)
27: xt = 1;
28: EndIf
29: Else
30: If(yt == 7){ /* We do not use yt = 5 because y
31: is not a prime */
32: yt = yt – 4;
33: y = y – 4;
34: Else
35: yt = yt – 2;
36: y = y – 2;
37: EndIf
38: /* If the least significant digit of y is 1, then the next
39: should be 9 after computing y = y - 2 */
40: If(yt == 1)
41: yt = 9;
42 EndIf
43: EndIf
44: m = x * y;
45: EndWhile
46: EndIf

Output: x and y, where x and y are prime numbers which
are the factors of n

Fig. 2. MVFactor algorithm

2013 International Computer Science and Engineering Conference (ICSEC): ICSEC 2013 English Track Full Papers

346

Example 1: VFactor VS. MVFactor, given n = 72851 = 277 *
263.

Algorithm: VFactor

root = floor(sqrt(n)) = 269
So, y = 269, x = 271
271 * 269 = 72899, that is more than n, compute y = y - 2 =
267
271 * 267 = 72357, that is less than n, compute x = x+2 = 273
273 * 267 = 72891, that is more than n, compute y = y - 2 =
265
273 * 265 = 72345, that is less than n, compute x = x+2 = 275
275 * 265 = 72875, that is more than n, compute y = y - 2 =
263
275 * 263 = 72325, that is less than n, compute x = x+2 = 277
277 * 263 = 72851, here is equal to n, thus the factors of n are
277 and 263

According to Example 1 of VFactor, the iterations of
computing the product of two integers are 7.

Algorithm: MVFactor

root = 269
So, y = 269, x = 271
271 * 269 = 72899, that is more than n, compute y = y - 2 =
267
271 * 267 = 72357, that is less than n, compute x = x+2 = 273
273 * 267 = 72891, that is more than n, compute y = y - 2 =
265. Because the least significant digit of y is 5, we continue
computing y = y - 2 = 263.
273 * 263 = 71799, that is less than n, compute x = x+2 =
275. Because the least significant digit of x is 5, we continue
computing x = x + 2 = 277.
277 * 263 = 72851, here is equal to n, thus the factors of n are
277 and 263

According to Example 1 of MVFactor, the iterations of
computing the product of two integers are only 5 which is less
than VFactor.

Example 2: VFactor VS. MVFactor, given n = 69133 = 269 *
257.

Algorithm: VFactor

root = floor(sqrt(n)) = 262, that is an even number, thus we
have to compute root = 262 – 1 = 261
So, y = 261, x = 263
263 * 261 = 68643, that is less than n, compute x = x+2 = 265
265 * 261 = 69165, that is more than n, compute y = y - 2 =
259
265 * 259 = 68635, that is less than n, compute x = x+2 = 267
267 * 259 = 69153, that is more than n, compute y = y - 2 =
257
267 * 257 = 68619, that is less than n, compute x = x+2 = 269
269 * 257 = 69133, here is equal to n, thus the factors of n are
269 and 257

According to Example 2 of VFactor, the iterations of
computing the product of two integers are 6.

Algorithm: MVFactor

root = 261
So, y = 261, x = 263
263 * 261 = 68643, that is less than n, compute x = x+2 =
265. Because the least significant digit of x is 5, we continue
computing x = x + 2 = 267.
267 * 261 = 69687, that is more than n, compute y = y - 2 =
259
267 * 259 = 69153, that is more than n, compute y = y - 2 =
257
267 * 257 = 68619, that is less than n, compute x = x+2 = 269
269 * 257 = 69133, here is equal to n, so the factors of n are
269 and 257

According to Example 2 of MVFactor, the iterations of
computing the product of two integers are only 5 which is less
than VFactor.

From two examples above, we conclude that MVFactor can
decrease iterations to compute the product of two integers in
comparison to VFactor. That is, the computation time of
MVFactor is decreased.

V. RESULTS

Experiments have shown the comparison between VFactor
and MVFactor. We choose BigInteger Class in Java to
implement two algorithms, because BigInteger is a data type
which is unlimited in size. In order to control the same
settings, all experiments were conducted on 2.53 GHz an
Intel® Core i3 with 4 GB memory.

TABLE I. COMPARISON BETWEEN VFACTOR AND MVFACTOR

n V - Factor MV – Factor
Com-
puting

m = x*y
(Iterations)

Comp
utatio

n
Time

(s)

Com-
puting

m = x*y
(Iterations)

Computa
tion

Time (s)
(Speed

Up (%))

25426686165792287
= 137462537 *
184971751

23754607 3.73 19003687 3.15
(15.54%

)
780115113938271913
= 840219481 *
928465873

44123196 6.81 35298558 5.76
(15.42%

)
5889267638331574111
= 2160246761 *
2726201351

282977295 43.03 226381837 36.05
(16.22%

)
163216432381925762729
= 16955697601 *
9626052329

3664822636 804.69 2931858109 653.14
(18.83%

)

According to Table I, the iterations of computing the

product of two integers of MVFactor are less than VFactor.
That is, the computation time of MVFactor is decreased. For
example, in Table I, n = 163216432381925762729 =
16955697601 * 9626052329, the iterations of computing the
product of two integers of VFactor are 3664822636 but
MVFactor are only 2931858109. That is, if we use MVFactor,
the iterations of computing the product of two integers are
decreased to 732964527 (3664822636 – 2931858109). In this

2013 International Computer Science and Engineering Conference (ICSEC): ICSEC 2013 English Track Full Papers

347

case, MVFactor is faster than VFactor which takes 804.69
seconds about 18.83%.

Fig. 3. Comparison of factorization algorithms

Fig. 3 shows a plot of comparison of factorization
algorithms between computation time and decimal digits of n
during 15 to 20 digits by using TDM, FFM, VFactor and
MVFactor. In Fig. 3, we choose prime factors of n with the
same size for experiments and we can see that MVFactor use
less time than VFactor, FFM and TDM to factorize n by
several examples.

VI. CONCLUSION

In this paper, MVFactor modified from VFactor is
proposed. This method computes the product of two integers
only if the least significant digit of two integers is not equal to
5. We can strongly confirm that the product of two integers is
not equal to n when the least significant digit of one out of two
integers is 5, because it is not a prime. Experiments have
shown that MVFactor can find the factors of n much faster
than VFactor. However, if q is far from p, the computation
time of MVFactor is more decreased than the computation
time of VFactor. The future work, we wish to improve
MVFactor to factorize the bigger size of n in the proper time.

For example, we may reduce more iterations to compute the
product of two integers. The multiplication is not computed
when we know that, one out of two multipliers is not a prime
number.

REFERENCES

[1] R.L. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital

signatures and public key cryptosystems”, Communications of ACM. 21
)1978 (158 -164 .

[2] Prashant Sharma, Amit Kumar Gupta, Ashish Vijay, “Modified Integer
Factorization Algorithm using V-Factor Method”, Advanced Computing
& Communication Technologies. (2012) 423 – 425.

[3] B. R Ambedkar, Ashwani Gupta, Pratiksha Gautam, Sarabjeet S.Bedi,
“An Efficient Method to Factorize the RSA Public Key Encryption ”,
Communication Systems and Network Technologies. (2011) 108 – 111.

[4] Qingfeng Huang, Zhi-Tang Li, Yejing Zhang, Chuiwei Lu, “A Modified
Non-Sieving Quadratic Sieve For Factoring Simple Blur Integers”,
Multimedia and Ubiquitous Engineering. (2007) 729 – 732.

[5] Jianqin Zhou, Jun Hu, Ping Chen, “Extended Euclid algorithm and its
application in RSA”, Information Science and Engineering. (2010) 2079
– 2081.

[6] A. K. Lenstra and H. W. L. Jr., editors. “The development of the number
field sieve”, volume 1554 of LNCS. Springer,1993.

[7] Bell, E. T. “The Prince of Amateurs: Fermat”. New York: Simon and
Schuster. (1986) 56-72.

[8] Garrett Paul B.,Making, “Breaking codes:An Introduction to
Cryptology”, Prentice Hall, 2000.

[9] David Bishop, “Introduction to Cryptography with java Applets”, Jones
and Bartlett Publisher, 2003.

[10] R.S. Vignesh, S. Sudharssum, K.J.J. Kumar, “Limitations of Quantum &
the Versatility of Classical Cryptography: A Comparative Study”,
Environmental and Computer Science, 2009. ICECS '09. (2009) 333-
337.

[11] J. Pollard, “Monte Carlo methods for index computation (mod p)”,
Math. Comp., Vol. 32, pp.918-924, 1978.

[12] Ren-Junn Hwang, Feng-Fu Su, “An Efficient Decryption Method for
RSA Cryptosystem”, Advanced Information Networking and
Applications, 2005. AINA 2005. (2005) 585-590.

[13] W. Diffie and M. E. Hellman, “New Directions in Cryptography”, In
IEEE Transactions on Information Theory, volume IT–22, no. 6, pages
644–654, November 1976.

2013 International Computer Science and Engineering Conference (ICSEC): ICSEC 2013 English Track Full Papers

348

